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The framework of nonequilibrium thermodynamics is used" to study the 
phenomenon of enhanced Rayleigh scattering from the liquid solid interface of 
a growing crystal. The scattering is treated as resulting from small "objects" of 
finite lifetime produced at the interface by the growth process and confined 
thereafter to one phase or the other. The thermodyanmic analysis leads to the 
formation, adjacent to the interface, of a boundary layer, various properties of 
which are studied. The analysis is then used to discuss the data obtained in two 
different experiments on the anomalous light scattering from the ice-water inter- 
face. It is found that the various data presented in these two experiments cannot 
be reconciled with each other in all respects. 

KEY WORDS: Crystal growth; irreversible thermodynamics; surface light 
scattering; ice. 

1. I N T R O D U C T I O N  

Dur ing  the pas t  10 years  Bi lgram and  co-workers  {~4) observed,  in a series 
of very t ho rough  exper iments ,  the unexpec ted  p h e n o m e n o n  of a n o m a l o u s  
l ight scat ter ing from the so l id - l iqu id  interface layer  of g rowing  ice crystals:  
a large centra l  peak  is observed  in the l ight scat ter ing spec t rum when a 
cri t ical  g rowth  veloci ty v C is exceeded. The p h e n o m e n o n  is a c c o m p a n i e d  by 
hysteresis:  the a n o m a l o u s  central  peak  persists  if the g rowth  veloci ty is 
subsequent ly  reduced  to values far be low v c. The a n o m a l o u s  scat ter ing 
vanishes,  however ,  in these exper iments  when growth  is te rminated .  W e  
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have previously tried to explain these experiments on the basis of the 
existence of multiple steady states in the surface density of scattering 
"objects" at the ice-water interface, assuming these "objects" to be crystal 
defects. 

A similar type of anomalous scattering phenomenon, but mostly 
without evidence for the existence of a critical growth rate, was subse- 
quently found in the organic substances salol, ~5'6~ cyclohexanol, ~7's) 
biphenyl, and naphthaleneJ 9) Cummins and co-workers attributed the scat- 
tering to the formation of microbubbles from dissolved gases in the liquid. 
This hypothesis gained support from the experiments of Vesenka and 
Yeh, ~1~ in which ice crystals were grown from water saturated with inert 
gases. Vesenka and Yeh's experiments indicate that two types of dynamic 
light scattering occur at the surface of a growing ice crystal, one fast and 
one slow. The slow component closely resembles the scattering arising 
when inert gases are dissolved in water. The fast component, the only one 
which persists after rigorous purification, is similar to that observed by 
Bilgram's group, (1 4) and does not seem to find its origin in microbubble 
formation. 

To help in the understanding of light scattering associated with crystal 
growth, we have recently applied the scheme of irreversible ther- 
modynamics to the stable growth of a crystal separated by a flat interface 
from the melt. (11~ This approach had the advantage that it is independent 
of mechanism and could be formulated in parallel fashion for the two cases 
that the "objects" responsible for the scattering reside in the solid or in 
the melt. This seemed significant to us since, in our opinion, the "fast" 
scattering component in ice has not yet been unambiguously assigned to 
either phase. 

In this paper we give once more, in Sections 2-4, the analysis based 
on the thermodynamics of irreversible processes, and at the same time state 
some further consequences of this analysis. Thus, we show that one is also 
able, in addition to a number of results concerning the behavior of the 
scattering layer, to determine, from quantities which are in principle 
experimentally observable, a lower bound for the lifetime of the scattering 
objects when these reside in the liquid, or an upper bound when they only 
occur in the solid. 

In Section 5, we discuss two experiments of anomalous light scattering 
observed at the water-ice interface. The first belongs to the group of 
experiments referred to above; the second is a new experiment, also per- 
formed by Bilgram and co-workers. (12) We show that our analysis is helpful 
in the understanding and the ordering of many of the data presented. 



Crystal Growth and Irreversible Thermodynamics 499 

2. N O N E Q U I L I B R I U M  T H E R M O D Y N A M I C S  A N D  CRYSTAL 
G ROWTH 

In this section we briefly restate the nonequilibrium thermodynamic 
analysis presented previously. (11~ 

We consider a two-component system, predominantly solvent, consist- 
ing of a liquid phase and a solid phase, separated by a macroscopically flat 
interface. The interface is located in the x-y plane of a Cartesian coordinate 
system at z = 0, while the liquid and solid phases occupy the half-spaces 
characterized respectively by z > 0 and z < 0. The system contains as solute 
a component, to which we refer as the "objects," and which resides either 
only in the liquid or only in the solid. The growth rate v, the normal 
velocity of the solid at the interface, is positive for solidification and 
negative for melting. The subsequent analysis is based on the condition of 
stationary growth. 

Thermodynamically the system is described by the following variables: 
its mass density p, momentum density pv, energy density u, and in addi- 
tion the number density of the objects n. The conservation laws for these 
variables in the bulk are the usual ones. In particular, if the objects exist 
only in the liquid phase, one has for their number density, denoted by n + 
in the liquid and n in the solid, the equations 

0~-- V'(n+v+ +J+)+J+' (1) 

r t - ~ 0  

where v + is the mass velocity in the liquid, j + is the diffusion flux, and J+  
is the rate of creation or annihilation of the objects. In Eq. (1), + and - 
must be interchanged if the objects exist only in the solid. 

We now turn to the conservation laws at the surface and denote sur- 
face densities and quantities pertaining to the surface by the superscripts s. 
We note that the normal component of v s vanishes identically in the coor- 
dinate frame chosen above. We also put the tangential component, and 
therefore v = itself, equal to zero, since there is no evidence that surface flows 
play any role in the problem under consideration. For  stationary growth, 
the conservation law for mass density at the interface then is 

p r y  = p v 2  = - p v  (2) 

where the subscript n denotes the component normal to the interface. For 
simplicity's sake we have neglected here the difference in mass density in 
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the liquid and solid phase and put p + = p  =p.  In Eq.(2) and other 
equations relative to the surface we use the notation 

f-+ = lim f ( x ,  y ,  + e )  (3) 
e ~ 0  

For the number density of objects one has at the surface the following 
balance equation: 

0n s 
- - =  - V ' j S - v + n + - j +  _ j ~  (4) 
0t 

when objects reside in the liquid or 

On s 
- - = - V . j S + v ; n  + j ~ - + J ~  (5) 
~t 

when they exist only in the solid. 
We shall not write down here the conservation laws or balance equa- 

tions for the other relevant quantities at the interface, but refer for these 
equations to our previous paper, (11) where we derive, following the scheme 
of nonequilibrium thermodynamics, the expression for the surface entropy 
production density a s. In this derivation we take the temperature to be 
continuous across the interface, so that T + =  T - =  T s, and for simplicity 
assume T s to be independent of position. We neglect in this way thermal 
effusion across the interface as well as thermal diffusion in the surface. One 
then finds the following expression for a~: 

TStr ~ = - j ~  . V A  ~ - v A p  - J ~ A  ~ >~ 0 (6) 

with A# = # + - # - .  
Here A is the number-based affinity of the objects (which vanishes at 

equilibrium and thus determines their equilibrium concentration); the 
quantities/~ -+ are the chemical potentials of the liquid and the solid phases. 

According to Eq. (6), three irreversible phenomena occur in the inter- 
face. The first is due to a vectorial phenomenon, the lateral diffusion of the 
objects, while the second and third account for the scalar processes of 
relaxation of the objects and growth of the solid. One can deduce (14) from 
the form of the entropy production the form of the linear phenomenologi- 
cal laws that couple the thermodynamic fluxes and forces in the interface. 

Since, due to the Curie principle, no coupling of vectorial and scalar 
processes is allowed for a surface with isotropic properties, the most 
general constitutive relations are 

A # =  - - l l a v - - 1 1 2  A s  

J ~  = l l z v  --  l z z A  s (7) 

j~ = - l  V A  s _ _ D  s V n  s 
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where we have used in the second line the Onsager-Casimir reciprocity 
relation /21 = --112 and introduced the diffusion constant D S =  I 3AS/On ~. 

What one has found here is essentially different from the situation in 
the bulk phases, where only a single scalar phenomenon occurs, to wit, 
relaxation of the density of the objects, and where Curie's principle 
prohibits direct coupling of this process to any other process in the bulk 
phases. But a new phenomenon may occur at the surface, namely that 
growth of the solid may be coupled to the relaxation rate of the objects, or 
in other words, that growth can be a driving force for the production of 
objects. (11) 

Since the solution of the interracial differential equation for n ~ deter- 
mines a boundary condition for the differential equation for n +, or n - ,  the 
new coupling phenomenon will influence the bulk behavior by giving rise 
to a three-dimensional boundary layer. 

We shall calculate the width of this layer, and the magnitude of its 
density, in the next section by solving the differential equations for n ~ and 
n + (or n ). To write down these equations we need in addition to the 
phenomenological equations (7) the phenomenological laws for the bulk 
quantities j+  and J~  (or j and JR-). These laws are 

and 

j+  = - D V n  + - D ' V T  + (8) 

J ~  = - ( n  + - n~) / z  (9) 

In Eq. (8), D is the diffusion coefficient and D' a thermal diffusion coef- 
ficient which characterizes the thermophoresis of the objects. The quantity 

in the fully linearized rate law (9) represents the lifetime of the objects 
and n ~ their equilibrium density in bulk. 

3. STEADY-STATE D ISTRIBUTION OF OBJECTS IN 
BULK DURING G R O W T H  

The distribution of objects in the bulk of the phase in which they 
reside, which for definiteness we have chosen to be the liquid, obeys the 
conservation equation (1). If we substitute into this equation the 
phenomenological laws (8) and (9) we get in the steady state 

O V2n + = V "  n+v + + (n + - n e ) / z  (10) 

It would seem that in writing this equation, the thermal diffusion term in 
Eq. (8) has not been taken into account. However, one is easily convinced, 
using the energy conservation law for an incompressible liquid in the 
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absence of dissipative flow phenomena, or for a solid, that here the only 
effect of thermal diffusion in the steady state is to replace D by an effective 
diffusion coefficient which differs from D by a negligible amount. 

The differential equation (10) must now be solved for the half-space 
which contains the objects, with boundary conditions at the interface and 
at infinity. The natural boundary condition at infinity is n + = n e, while the 
boundary condition at the interface is obtained by solving the steady-state 
differential equation for the surface density n s. This equation is obtained by 
substituting (7) and (8) into the surface conservation law (4) and reads 

V . ( D S V n S ) - n + v  + + D  On+/Oz+D'G + + 1 1 2 v - 1 2 2 A s = O  (11) 

Here G + =  ~T+/Oz represents the positive thermal gradient in the liquid, 
which cannot be eliminated from this equation as the corresponding term 
involving V2T + could be when obtaining Eq. (10). The above equation 
contains several sources of nonlinearity. Indeed, within the domain of 
validity of linear irreversible thermodynamics, D s, /11, /12, and [22 may still 
depend on n s, while A n is in general a nonlinear function of n'. Here we 
shall retain only the nonlinearity in 112, which can lead to critical behavior 
under appropriate conditionsJ TM Equation (11) then becomes 

D S V 2 n S - n + v  + + DOn+/Oz + D'G + + 1 1 2 ( n S ) v - ( n S - n s e ) / ' c = O  (12) 

with n se denoting the equilibrium density of objects at the interface and the 
lifetime ~ equal to (122 dA~/dn) 1. This last linearization had already been 
performed in bulk, c.f. Eq. (9) (strictly speaking, the lifetime ~ need not be 
equal in bulk and at the surface, as we assumed here). 

If the objects are confined to the solid phase, one has instead of 
Eq. (12) 

D~V2n~+n  v , , - D Q n  / O z - D ' G  + 1 1 2 ( n S ) v - ( n S - n S e ) / ~ = O  (13) 

as follows from Eq. (5) and the phenomenological equation for j , .  This 
equation is essentially identical in form to the equation we introduced 
previously to study the behavior of defects at the ic~water  interface, but 
also includes, as it should, terms for the effect of convection and of the 
thermal gradient. 

Using the self-consistent ansatz O n + / # z = - ( n  + - n ~ ) / z ~ ,  Eq. (12) 
reduces to 

D ~ VzF/s Jr 112(n ~) v -- (n s - nS~)/r~ + D'G + + vn ~ = 0 (14) 

where the effective lifetime is given by 

1 1 v D 
+ - -  (15) + r~r r ~ d dz + 

In this equation d = nS/n + represents the interfacial width. 
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In an earlier paper (~3) we investigated the stability of the solutions of 
Eq. (13) for a step-function nonlinear dependence of 1~2 on n', which is of 
the type that leads to critical behavior. It was then found that for a 
sufficiently large interface the only stable solutions are uniform in the x - y  
plane and are determined by 

(n" - n s e  - D'G + z ~ ) / z +  v = 112(n ~) + n ~ (16) 

+(0) - n ( v )  at 

with 

n + ( z ) - n  e= [ n + ( v ) - n  e] e x p ( - z / z ~  ) (17) 

where z~, the width of the boundary layer, is 

Z~- ~ 1 1 2 2 - - ~ w + 5 ( v  z + 4 D z )  1/2 (18) 

One easily shows z~  to be positive for all values of v if one substitutes 
Eq. (18) into the expression (15). 

In case the objects reside in the solid, Eq. (16) [cf. also Eq. (13)] must 
be replaced by 

(n" - -  n " e  - ] -  D'G %rf) /z~v = llz(n')  - -  n e (19) 

1 1 v D 
- - =  - +  (20) 
zo? z ~+~0 

where now d -  nS/n . 

The distribution of objects in the solid is analogous to the one given 
by Eq. (17) and is 

n -  ( z ) - -  n e=  [n(v ) - -  n e] exp(z /z  o ) (21) 

with the characteristic width 

z ~  = �89 �89 (22) 

Equations (17) and (21) are valid for solidification, v>0 ,  as well as 
for melting, v < 0. The magnitude of the nonequilibrium density in the 
boundary layer, n ( v ) - n  e, results from the coupling of the growth process 

The solution of this equation provides the boundary value n 
the interface, if one makes the substitution n~= n +(0)d. 

One is now able to solve Eq. (10) for uniform convection, v + =v2, 
with f the unit vector in the z direction, which is the only case of interest 
here and which is automatically realized in the solid. 

The solution of (10) then is 
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to the relaxation of the objects as described by Eqs. (16) and (19), respec- 
tively. The limiting behavior of the width of the boundary layer for large 
and small values of v > 0 is seen to be 

Zff = (DT) 1/2, I/)l '~ (4D'c) 1/2 (23)  

and 

z + = D/v, z o = v v ,  [vl ~> (4D/z) (24) 

It can also be shown from Eqs. (18) and (22) that for v > 0 the derivative 
of z~(v) with respect to v is a negative function for all values of v, and that 
of z - (v )  a positive function. Therefore the width of the boundary layer 
monotonically decreases as v increases if the objects reside in the liquid, 
and in the same way increases if they are in the solid. This implies in 
particular that 

and that 

0 ~ Z~-(1))~ (D'E) 1/2 (25) 

z~> + 2 (Zo . . . .  ) /D (26) 

where z + is the maximum width observed. 0~ nlax 
We have thus determined a lower bound for the lifetime ~ in the case 

that the objects are in the liquid phase, a lower bound which can be 
calculated from the quantities z~(v) and D, when these are experimentally 
accessible. Similarly, one could determine an upper bound for z, for the 
other case in which the solid contains the objects. 

4. INTENSITY OF LIGHT SCATTERED FROM OBJECTS 
PRODUCED BY GROWTH 

The spectral intensity I(k, co) of light scattered by objects produced at 
an interface between a growing solid and its melt has been calculated 
previously (13) and is given by the expression 

const. Az~ (v) n(v)(Dk 2 + 1/2~) 
I(k, co) = (co_vkz)2+Ok2+l/~.  (27) 

Here A is the cross section in the x-y  plane of the observed scattering 
volume, k is the scattered wave vector, and co is the frequency shift of 
scattered light. The other symbols in this expression have been defined in 
the previous sections. It is also understood that the quantity designated as 
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"const" is only truly constant with respect to k, when the objects are small 
compared to the wavelength of the incident l ight /n)  

The above expression shows that one has a Lorentzian spectrum 
centered at ~o = vkz, with a half-width F =  Dk2+ l/z, and that the intensity 
depends on the growth velocity through the product of two factors. The 
first of these factors, the width of the boundary layer z~(v), has been 
calculated in Section 3 [cf. Eqs. (18) and (22)] and is a slowly varying 
function of v. The other factor, n(v), is determined by the steady-state den- 
sity of objects at the interface n s, which is obtained by solving Eqs. (16) or 
(19). When the Onsager coefficient 112 is independent of n s, these equations 
have only one single solution, which is a smooth function of v. Conse- 
quently there will be no critical behavior and hysteresis in this case, and no 
threshold to anomalous scattering. 

However, if 112 is a sigmoidal function of the surface density of objects, 
then Eqs. (16) or (19) may have multiple steady-state solutions. These may 
be obtained graphically as the intersections of the curves representing the 
two sides of the equations. An illustration of this situation and procedure 
is given in Fig. 1. One s e e s  (13) that for v < v~ and v~ < v there exists only 
one solution, while for v~ < v < v~ there will be three, of which two are 
locally stable and the one with the intermediate value unstable. By plotting, 
as in Fig. 2, the locally stable solutions for increasing and decreasing values 
of v, one finds two critical growth velocities: the larger determines a true 
threshold to an increased density of objects in the surface layer, and 

(ns)+ n e 12 

v < vt < 

n e+ UG T~ff  

Fig. 1. The left- and right-hand sides of Eq. (16) or Eq. (19) plotted as a function of the 
surface density of defects n s for the case that the right-hand side, 112(nS), is a sigmoidal 
function. The intersections of the left- and right-hand sides for three values of v are shown as 
points. For v < v~ and v~ < v only one intersection, and therefore a unique steady state, occurs. 
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Fig. 2. A schematic representation of the stable steady states for n '  as a function of v for the 
sigmoidal function l~2(n') illustrated in Fig. 1. Two stable states exist for v~ < v < v S. The 
dashed lines represent jumps  in n" as v is increased above v~ on the lower branch and 
decreased below v~ on the upper branch. 

thereby to anomalous light scattering, when v is increased. A decrease of v, 
following increase above v~, leads to the hysteresis indicated by the 
downward arrows. Quantitative details of the behavior sketched here 
depend on the values of the kinetic parameters involved. 

The graphic construction in Fig. 1 exhibits an important feature of the 
threshold velocities, namely their dependence on the temperature gradient 
G, which follows from the solutions of Eqs. (16) and (19): if the objects 
reside in the liquid, an increase of G results in a parallel displacement to 
the right of the straight line representing the left-hand side of Eq. (16) and 
therefore in a decrease of the critical growth velocities. On the other hand, 
if the objects are in the solid, one finds in a similar way that an increase 
of G causes an increase in the critical growth velocities. 

The preceding analysis leads to the following conclusions. 

1. Criticality and hysteresis may result from a surface instability in 
the distribution of objects due to a nonlinear coupling between the growth 
of the solid and the relaxation of the density of the objects. 

2. Equation (16), or (19), shows that the same molecular mechanism 
cannot lead to behavior that is symmetric for freezing (v>0)  and for 
melting (v < 0). 

3. If there are no objects and both bulk phases are uniform and 
homogeneous (and remain so during growth), there is no room within the 
thermodynamic description for anomalous scattering coupled to growth. 
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In addition to these conclusions of a general nature, the analysis 
implies more specific statements concerning the possible location of the 
objects. 

4. Due to thermophoresis, the threshold to anomalous scattering 
depends on the temperature gradient G at the interface in such a way that 
dV~l/dG > 0 if the objects reside in the solid, and that dV~l/dG < 0 if they exist 
only in the liquid. 

5. For sufficiently large v the width of the scattering layer is propor- 
tional to v if the objects are in the solid, and inversely proportional to v if 
they reside in the liquid [-cf. Eq. (24)]. 

6. From the width of the scattering layer and the width of the 
spectral line associated with it, a lower bound can be found for the lifetime 
of the objects if these are confined to the liquid phase [-cf. Eq. (26)], and 
an upper bound for the same quantity if they occur only in the solid. 

One last remark is in order: in the preceding discussion it has been 
assumed that the term n e is constant. It might, however, be that only a 
quasiequilibrium is realized and that n e is a function of a slowly varying 
parameter. This then could lead to apparent instead of true hysteretic 
behavior, as we have argued elsewhere3 H) 

5. THE S O L I D - L I Q U I D  INTERFACE LAYER OF G R O W I N G  ICE 
CRYSTALS: THE NATURE OF THE SCATTERING OBJECTS 

We shall use here the analysis of the previous sections to discuss the 
results found in two different experiments in which anomalous light 
scattering was observed at the surface of a growing ice crystal. The first 
experiment was performed by B6ni et al. (BBK), ~3) the second by Halter 
et al. (HBK)/12) HBK state that they "observed the same phenomenon as 
B6ni et al." Indeed in both experiments: 

1. Anomalous scattering is observed if a critical growth volocity 
vc-~ 1.5/~m/sec is exceeded. 

2. Hysteresis occurs if the growth volocity is subsequently lowered. 

3. The thickness Zo of the scattering layer at growth velocities of 
1.5/~m/sec is about 3~,/~m (for BBK, Zo___4/~m/sec; for HBK, 
Zo ~ 3/~m/sec). 

4. A diffusion coefficient D is deduced from the linewidth of Rayleigh 
scattered light of 2 3#m2/sec (for BBK, D_~3#m2/sec; for HBK, 
D -~ 2 #m2/sec). 

822/57/34-6 
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There are, however, differences in the results reported. Thus, for 
example: 

5. It was observed in the BBK experiment that the critical growth 
velocity is an increasing function of the temperature gradient in the ice near 
the interface. The influence of the temperature gradient on the critical 
growth velocity at the interface has not been studied in the HBK experi- 
ment. 

6. In the HBK experiment the growth velocity dependence of the 
scattering layer thickness z o was measured for decreasing velocities v. It was 
found that Zo is inversely proportional to v and behaves as Zo ~-D/v. A 
maximum thickness of ~-200/~m was observed. No comparable data exist 
for the BBK experiment. 

7. In the HBK experiment increased Rayleigh scattering is tentatively 
attributed to structures (or objects) of several H-bonded molecules, whose 
formation was inferred from Raman spectra measurements and which have 
a lifetime ~ "-~ 4 x 10-13 sec. 

If we now apply to these data the analysis of the previous sections, we 
are led to conclude from the above items 5-7, taking also items 3 and 4 
into account, the following. 

For the BBK experiment, the scattering layer and the object exist on 
the solid side of the interface (cf. item 4 of Section 4). An upper bound can 
then be inferred, from the estimated thickness of the layer z o - 4 / t m  and 
the measured diffusion coefficient D ~- 3 #m2/sec, for the lifetime ~ of the 
objects (cf. end of Section 3). This upper bound is about 5 sec. 

Since it is well known that a solid growing from a pure liquid 
invariably incorporates structural defects, the BBK experiment therefore 
does not seem to be in disagreement with an explanation in which the 
objects which cause the anomalous light scattering in growing ice crystals 
are small, mobile defects that coalesce from interstitial defects during 
growth.(11,13) 3 

For the HBK experiment, we conclude that the scattering layer and 
the objects exist on the liquid side [see item 5 of section 4 and Eqo (23)] 
and that a lower bound for the lifetime r of the objects is 2 x 104 sec. 
Clearly, then, the results of the two experiments do not seem to be com- 
patible with each other in all respects. Moreover, in the HBK experiment 
the value 4 x 10 13 sec of the lifetime of the structures seen in the Raman 
experiments, which were conjectured by HBK to be responsible for the 

3 Evidence that bubbles are not responsible for light scattering in cyclohexane has recently 
been provided in ref. 15. 
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enhanced Rayleigh scattering, is not compatible with the observed values of 
Zo(V) and D. 

As far as the differences in the results of the two experiments are con- 
cerned, one must keep in mind that they were not performed in the same 
way. In the BBK experiment a zone melting apparatus was used. The HBK 
experiment, on the other hand, was performed with the Czochralski growth 
technique and with ice crystals grown in a helium atmosphere kept at over- 
pressure. The authors say: "Helium [was]  chosen because its solubility in 
ice is a little higher than in water. Thus we prevent the segregation of gases 
at the solid liquid interface. ''(12) But could it be that unforseen "objects" are 
created in this procedure, especially in light of the evidence of Vesenka and 
Yeh (1~ for helium bubbles at the ice surface when helium is present in the 
liquid phase? 

It seems to us that more experimental data are required to determine, 
with the help of the analysis presented above, the origin of anomalous light 
scattering in a growing ice crystal in an unambiguous way. 
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